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ABSTRACT
The release frequency of software projects has increased in
recent years. Adopters of so-called rapid release cycles claim
that they can deliver addressed issues (i.e., bugs, enhance-
ments, and new features) to users more quickly. However,
there is little empirical evidence to support these claims.
In fact, in our prior work, we found that code integration
phases may introduce delays in rapidly releasing software
— 98% of addressed issues in the rapidly releasing Firefox
project had their integration delayed by at least one release.
To better understand the impact that rapid release cycles
have on the integration delay of addressed issues, we per-
form a comparative study of traditional and rapid release
cycles. Through an empirical study of 72,114 issue reports
from the Firefox system, we observe that, surprisingly, ad-
dressed issues take a median of 50 days longer to be inte-
grated in rapid Firefox releases than the traditional ones. To
investigate the factors that are related to integration delay
in traditional and rapid release cycles, we train regression
models that explain if an addressed issue will have its in-
tegration delayed or not. Our explanatory models achieve
good discrimination (ROC areas of 0.81-0.83) and calibra-
tion scores (Brier scores of 0.05-0.16). Deeper analysis of our
explanatory models indicates that traditional releases prior-
itize the integration of backlog issues, while rapid releases
prioritize issues that were addressed during the current re-
lease cycle. Our results suggest that rapid release cycles
may not be a silver bullet for the rapid delivery of addressed
issues to users.

1. INTRODUCTION
To achieve sustained success, software projects must at-

tract and retain the interest of users [30]. Since users will
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quickly lose interest in a stagnant software system, successful
systems need to continuously provide exciting new features
and fix bugs that are frustrating users.

Within the context of constantly evolving requirements
(e.g., in agile development), approaches like eXtreme Pro-
gramming (XP) and Scrum have arisen to foster faster soft-
ware delivery [5].1 Those methodologies claim to better em-
brace a constantly evolving requirements context by shorten-
ing release cycles. Indeed, modern release cycles are on the
order of days or weeks rather than months or years [3]. Such
rapid releasing enables faster user feedback and a smoother
roadmap for user adoption.

The allure of delivering new features faster has led many
large software projects to shift from a more traditional re-
lease cycle (e.g., 12-18 months to ship a major release), to
shorter release cycles (e.g., weeks). For example, Google
Chrome, Mozilla Firefox, and Facebook teams have adopted
shorter release cycles [1]. In this paper, we use the terms
rapid releases to describe releases shipped using release cy-
cles of weeks or days, and traditional releases to describe
releases shipped using release cycles of months or years.

Prior research investigated the impact of adopting rapid
releases [4, 18, 20, 28, 29]. For example, Khomh et al. [18]
found that bugs related to crash reports tend to be fixed
faster in rapid Firefox releases than traditional Firefox re-
leases. Mäntylä et al. [20] found that the Firefox project’s
shift from a traditional to a rapid release cycle has been
accompanied by an increase in the testing workload.

To the best of our knowledge, no previous research has em-
pirically studied the impact that a shift from a traditional
to a rapid release cycle has on the speed of integration of
addressed issues. Such an investigation is important to em-
pirically check if adopting a rapid release cycle really does
lead to quicker delivery of addressed issues. In our previ-
ous work [7], we studied the delay that is introduced by
the integration phase of a software project. We found that
98% of bug-fixes and new features in the rapid releases of
Firefox were delayed by at least one release. Such delayed
integration hints that even though rapid releases are consis-
tently delivered every 6 weeks, they may not be delivering
addressed issues as quickly as its proponents purport.

Integration delay can be frustrating for users because they

1http://www.scrumguides.org/



are mainly interested in the release of an addressed issue (so
they can benefit from it) rather than if it is addressed. Anec-
dotally, a recent issue of the Firefox system, in which a user
asks: “So when does this stuff get added? Will it be applied
to the next FF23 beta? A 22.01 release? Otherwise?”.2

Hence, in this paper, we analyze 72,114 issue reports from
the Firefox system (34,673 for traditional releases and 37,441
for rapid releases). These issue reports refer to bugs, en-
hancements, and new features [2]. We set out to compara-
tively study the integration delay of addressed issues in the
traditional and rapid releases of the Firefox system. More
specifically, we address the following research questions:

• RQ1: Are addressed issues integrated more
quickly in rapid releases? Interestingly, we find that
although issues are addressed more quickly in rapid re-
leases, they tend to wait a longer time to be integrated
and released to users.

• RQ2: Why can traditional releases integrate ad-
dressed issues more quickly? We find that minor-
traditional releases (i.e., shorter releases that occur
after a major version of the software) are a key rea-
son why addressed issues tend to be integrated more
quickly in traditional releases. In addition, we find
that the length of the release cycles are roughly the
same between traditional and rapid releases when con-
sidering both minor and major releases, with medians
of 40 and 42 days, respectively.

• RQ3: Did the change in release strategy have an
impact on the characteristics of delayed issues?
Our models suggest that issues are queued up in tra-
ditional releases — issues that are addressed early in
the project backlog are less likely to be delayed. On
the other hand, issues in rapid releases are queued up
on a per release basis, in which issues that were ad-
dressed early in the release cycle of a given release are
less likely to be delayed.

Paper organization. The remainder of this paper is or-
ganized as follows. In Section 2, we present the necessary
background and definitions to the reader. In Section 3, we
explain how we set up our empirical study. In Section 4,
we present the results of our empirical study, while we dis-
cuss additional analyses in Section 5. Section 6 discloses the
threats to the validity of our analyses. In Section 7, we dis-
cuss the related work. Finally, Section 8 draws conclusions.

2. BACKGROUND & DEFINITIONS
Issue Reports. An issue report describes a new feature,

enhancement, or bug. Modern software projects use Issue
Tracking Systems (ITSs, e.g., Bugzilla) to manage issues as
they transition from being understood to being addressed.3

Each issue report has a unique identifier (issue ID), a de-
scription of the nature of the issue, and a variety of other
metadata (e.g., the severity and priority of the issue).4 Large
software projects receive plenty of issue reports on a daily
basis. For example, our data shows that a median of 124
Firefox issues were opened per day from 1999 to 2010.

2https://bugzilla.mozilla.org/show bug.cgi?id=883554
3https://www.bugzilla.org/
4https://bugzilla.readthedocs.org/en/5.0/using/
understanding.html

When developers start working on issue reports, they use
the issue status to track progress through an issue life cycle.
In the issue life cycle, an issue is (1) reported (new status),
(2) triaged to an appropriate developer (assigned status),
and (3) addressed (fixed status). A more detailed description
of the issue report life cycle of Firefox is provided in the
Bugzilla documentation.5

In this paper, we study addressed issues, which are issues
that are resolved with the fixed status and integrated into
traditional and rapid releases of the Firefox system.

Firefox Release Cycles. In this paper, we study the
popular Firefox web browser.6 Firefox has approximately
18% of the worldwide market share of web browsers.7 Fire-
fox is a fitting subject for our study because it shifted from
a traditional release cycle to a rapid release cycle.

The traditional release cycle of Firefox was applied to ma-
jor releases (1.0 to 4.0). Such traditional major releases
would take 12-18 months to be shipped.8 Each major tradi-
tional release has subsequent minor releases containing bug
fixes. Such minor releases may be released in parallel with
other major traditional releases or even with major rapid
releases. Indeed, the final minor traditional release (3.6.24)
was released in tandem with major rapid release 8.

Firefox started to adopt a rapid release cycle in March
2011. The first official rapid release was shipped in June
2011. The rapid releasing Firefox ships a major release ev-
ery 6 weeks. In the Firefox rapid release strategy, a release
is shipped into the NIGHTLY channel every night. This
NIGHTLY release incorporates the addressed issues that
were integrated into the mozilla-central code repository.9

Releases of the NIGHTLY channel migrate to the AU-
RORA and BETA channels to be stabilized. Once stabilized,
an official release is broadcasted on the RELEASE channel.
In the AURORA channel, the quality assurance team (QA)
makes decisions of whether the code that was stabilized in
AURORA can be pushed to the BETA channel.10 Code that
was further stabilized in the BETA channel is pushed to the
RELEASE channel. The rapid release strategy is able to
ship new official releases (on the RELEASE channel) every
six weeks because it allows for the development of consecu-
tive releases that are migrated from one channel to another
on a regular basis.

Moreover, the rapid release cycle of the Firefox system
also includes minor releases that contain bug fixes and Ex-
tended Support Releases (ESR). ESRs are shipped to organi-
zations/customers who are willing to have the latest Firefox
features, but are not able to keep updating their Firefox sys-
tem at the same pace that the rapid releases are shipped.11

3. EMPIRICAL STUDY SETUP
In this section, we provide our rationale for selecting the

Firefox system for our empirical study and describe our ap-
proach to collect data from it.

5https://bugzilla.readthedocs.org/en/5.0/using/editing.
html#life-cycle-of-a-bug
6https://www.mozilla.org/en-US/firefox/new/
7https://clicky.com/marketshare/global/web-browsers/
8https://en.wikipedia.org/wiki/Firefox release history
9https://hg.mozilla.org/mozilla-central/

10http://mozilla.github.io/process-releases/draft/
development overview/

11https://www.mozilla.org/en-US/firefox/organizations/
faq/
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Figure 1: Overview of the process to construct the dataset
that is used in our analyses.

Table 1: The studied traditional and rapid Firefox releases.

Strategy Version range Time period #Major #Minor

Trad. 1.0 - 4.0 Sep/2004 - Mar/2012 7 104
Rapid 5 - 27 Jun/2011 - Sep/2014 23 50

3.1 Firefox System
We choose to study the Firefox system because it offers

a unique opportunity to investigate the impact of shifting
from a traditional release cycle to a rapid release cycle us-
ing rich, publicly available ITS and Version Control System
(VCS) data. Although other open source systems may have
ITS and VCS data available, they do not provide the op-
portunity to investigate the transition between traditional
releases and rapid releases. In addition, to compare differ-
ent systems that use traditional and rapid releases poses a
great challenge, since one has to distinguish to what extent
the results are due to the release strategy and not due to in-
tricacies of the systems itself. Therefore, we highlight that
the choice to investigate Firefox is not accidental, but based
on the specific analysis constraints that such data satisfies.

3.2 Data Collection
Figure 1 shows an overview of our data collection ap-

proach. Each step of the process is described below.
Step 1: Collect release information. We collect the

date and version number of each Firefox release (minor and
major releases of each release strategy) using the Firefox re-
lease history wiki.12 Table 1 shows: (i) the range of versions
of releases that we investigate, (ii) the investigated time pe-
riod of each release strategy, and (iii) the number of major
and minor studied releases in each release strategy.

Step 2: Link issues to releases. Once we collect the
release information, we use the tags within the VCS to link
issue IDs to releases. First, we analyze the tags that are
recorded within the VCS. Since Firefox migrated from CVS
to Mercurial in release 3.5, we collect the tags of releases 1.0
to 3.0 from CVS, while we collect the tags of releases 3.5
to 27 from Mercurial.13,14 By analyzing the tags, we extract
the commit logs within each tag. The extracted commit logs
are linked to the respective tags. We then parse the commit
logs to collect the issue IDs that are being addressed in the
commits. We discard the following patterns of potential
issue IDs that are false positives:

1. Potential IDs that have less than five digits, since the
issue IDs of the range of the releases that we investigate
have at least five digits (2,559 issues were discarded).

2. Commit logs that follow the pattern: “Bug <ID> -
reftest” or “Bug <ID> - JavaScript Tests”, which refer
to tests and not bug fixes (269 issues were discarded).

12https://en.wikipedia.org/wiki/Firefox release history
13http://cvsbook.red-bean.com/cvsbook.html
14https://mercurial.selenic.com/

3. Any potential ID that is the name of a file,
e.g., “159334.js” (607 issues were discarded).

We find that all of the remaining IDs match issue IDs that
exist in the Firefox ITS.

Since the commit logs are linked to the VCS tags, we are
also able to link the issue IDs found within these commit
logs to the releases that correspond to those tags. For ex-
ample, since we find the fix for issue 529404 in the commit
log of tag 3.7a1, we link this issue ID to that release. We
also merge together the data of development releases like
3.7a1 into the nearest minor or major release. For example,
release 3.7a1 would be merged with release 4.0, since it is
the next user-intended release after 3.7a1. In the case that
a particular issue is found in the commit logs of multiple
releases, we consider that particular issue to pertain to the
earliest release that contains the last fix attempt (commit
log), since such a release is the first one that contains the
complete fix for that issue. Finally, we collect the issue re-
port information of each remaining issue (e.g., opening date,
fix date, severity, priority, and description) using the ITS.
Moreover, since the minor-rapid releases are off-cycle re-
leases, in which addressed issues may skip being integrated
into mozilla-central (i.e., NIGHTLY) tags, we manually col-
lect the addressed issues that were integrated into those re-
leases using the Firefox release notes (i.e., 247 addressed is-
sues).15 We add the manually collected addressed issues
from ESR releases within the rapid releases data, since they
also represent data from a rapid release strategy.

Steps 3 and 4: Compute metrics and perform anal-
yses. We use the data from Step 2 to compute the metrics
that we use in our analyses. We select these metrics (which
are described in greater detail in Section 4) because we sus-
pect that they share a relationship with integration delay.

4. RESULTS
In this section, we present the motivation, approach, re-

sults, and conclusions of our empirical analyses with respect
to each of our research questions.

RQ1: Are addressed issues integrated more quickly
in rapid releases?

Motivation: Recently, many software organizations have
adopted rapid release cycles in order to deliver addressed
issues to users more quickly. However, there is a lack of
empirical evidence to indicate that rapid release cycles inte-
grate addressed issues more quickly than traditional release
cycles. In RQ1, we compare the integration delay of ad-
dressed issues in traditional and rapid releases.
Approach: Figure 2 shows the basic life cycle of an is-
sue, which includes the triaging phase (t1), the fixing phase
(t2), and the integration phase (t3). We consider the last
RESOLVED-FIXED status as the moment that a particu-
lar issue was addressed (the fixed state in Figure 2). The
lifetime of an issue is composed of all three phases (from
new to released). We first observe the lifetime of the issues
of traditional and rapid releases. Next, we look at the time
span of the triaging, fixing, and integration phases within
the lifetime of an issue.

We use beanplots [17] to compare the distributions of our
data. The vertical curves of beanplots summarize and com-
pare the distributions of different datasets (see Figure 3(a)).

15https://www.mozilla.org/en-US/firefox/releases/
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Figure 3: Time spans of the phases involved in the lifetime
of an issue.

The higher the frequency of data within a particular value,
the thicker the bean is plotted at that particular value on
the y axis. We also use Mann-Whitney-Wilcoxon (MWW)
tests [31] and Cliff’s delta effect-size measures [6]. MWW
tests are non-parametric tests of the null hypothesis that two
distributions come from the same population (α = 0.05). On
the other hand, Cliff’s delta is a non-parametric effect-size
measure to verify how often values in one distribution are
larger than values in another distribution. The higher the
value of the Cliff’s delta, the greater the difference of values
between distributions. For instance, if we obtain a signif-
icant p − value but a small Cliff’s delta, this means that
although two distributions do not come from the same pop-
ulation they are not much different in terms of values. A
positive Cliff’s delta indicates how much larger the values
of the first distribution are, while a negative Cliff’s delta
indicates the inverse. Finally, we use the Median Absolute
Deviation (MAD) [12, 19] as a measure of the variation of
our distributions. The MAD is the median of the absolute
deviations from one distribution’s median. The higher the
MAD, the greater is the variation of a distribution with re-
spect to its median.
Results: There is no significant difference between
traditional and rapid releases regarding issue lifetime.
Figure 3(a) shows the distributions of the lifetime of the is-
sues in traditional and rapid releases. We observe a signif-
icant p < 1.03−14 but a negligible (delta = 0.03) difference
between the distributions. We also observe that traditional
releases have a greater MAD (154 days) than rapid releases
(29 days), which indicates that rapid releases are more con-
sistent with respect to the lifetime of the issues. Our results
indicate that the difference in the issues’ lifetime between
traditional and rapid releases is not as obvious as one might

expect. We then look at the triaging, fixing, and integration
time spans to better understand the differences between tra-
ditional and rapid releases.

Addressed issues are triaged and fixed faster in
rapid releases, but tend to wait for a longer time be-
fore being released. Figures 3(b) , 3(c), and 3(d) show the
triaging, fixing, and integration time spans, respectively. We
observe that addressed issues take 54 days on average (me-
dian) to be integrated into traditional releases, while tak-
ing 104 days (median) to be integrated into rapid releases
(p < 2.2−16 with a small effect-size of delta = −0.25).

Regarding fixing time span, an issue takes 6 days (me-
dian) to be fixed in rapid releases, and 9 days (median) in
traditional releases. These results are statistically significant
(p < 2.2−16), but there is only a negligible (delta = 0.13)
difference between distributions. Our results complement
previous research. Khomh et al. [18] found that post- and
pre-release bugs that are associated with crash reports are
fixed faster in rapid Firefox releases than in traditional re-
leases. Furthermore, we observe a significant p < 2.2−16

but a negligible (delta = 0.11) difference between tradi-
tional and rapid releases regarding triaging time. The me-
dian triaging time for rapid and traditional releases are 11
and 18 days, respectively.

When we consider both pre-integration phases together
(triaging t1 plus fixing t2 in Figure 2), we observe that an
issue takes 11 days (median) to triage and address issues in
rapid releases, while it takes 19 days (median) in traditional
releases (p < 2.2−16 with a small effect-size of delta = 0.15).
Our results suggest that even though issues have shorter pre-
integration phases time span in rapid releases, they remain
“on the shelf” for a longer time on average.

Finally, we again observe that rapid releases are more con-
sistent than traditional releases in terms of fixing and inte-
gration time spans. Rapid releases achieve MADs of 9 and
17 days for fixing and integration, respectively. The values
for traditional releases are 13 and 64 days for fixing and
integration, respectively.

Although issues are triaged and fixed faster in rapid re-
leases, they tend to take a longer time to be integrated.
Moreover, the integration delay is more consistent in
rapid releases than in traditional ones.

RQ2: Why can traditional releases integrate ad-
dressed issues more quickly?

Motivation: In RQ1, we find that traditional releases tend
to integrate addressed issues more quickly than rapid re-
leases. This result raises the following question: how can a
traditional release strategy, which has a longer release cy-
cle, integrate addressed issues more quickly than a rapid
release strategy?
Approach: We group traditional and rapid releases into
major and minor releases and study their integration de-
lay. Similar to RQ1, we use beanplots [17], Mann-Whitney-
Wilcoxon tests [31], Cliff’s delta [6], and MAD [12, 19] to
analyze the data.
Results: Minor-traditional releases tend to have less
integration delay than major/minor-rapid releases.
Figure 4 shows the distributions of integration delay grouped
by (1) major-traditional vs. minor-traditional, (2) major-
traditional vs. rapid, (3) major-rapid vs. minor-rapid, and
(4) minor-traditional vs. minor-rapid. In the comparison
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of major-traditional vs. minor-traditional, we observe that
minor-traditional releases are mainly associated with shorter
integration delay. Furthermore, in the comparison major-
traditional vs. rapid, rapid releases integrate addressed is-
sues more quickly than major-traditional releases on average
(p < 2.2−16 with a medium effect-size, i.e., delta = 0.40).

The Firefox rapid release cycle includes ESR releases
(see Section 2) and a few minor stabilization and secu-
rity releases. These releases also integrate addressed is-
sues more quickly than major-rapid releases (major-rapid
vs. minor-rapid) with a p < 2.2−16 and a large effect-size,
i.e., delta = 0.92.

Although we do not observe a statistically significant dif-
ference between distributions in the comparison of minor-
traditional vs. minor-rapid (p = 0.68), it is interesting to
note how minor-traditional releases tend to have shorter in-
tegration delay compared to minor-rapid releases (25 and
26, respectively).

Minor-traditional releases have the lowest integration de-
lay. This is likely because they are more focused on a par-
ticular set of issues that, once addressed, should be released
immediately. For example, the release history documenta-
tion of Firefox shows that minor releases are usually related
to stability and security issues.16

When considering both minor and major releases,
the time span between traditional and rapid releases
are roughly the same. Since we observe that integration
delay is shorter on average in traditional releases, we also
investigate the length of the release cycles to better under-
stand our previous results. Figure 5(a) shows that, at first
glance, one may speculate that rapid releases should deliver
addressed issues more quickly because releases are produced
more frequently. However, if we consider both major and mi-
nor releases — as shown in Figure 5(b) — we observe that
both release strategies deliver releases at roughly the same

16https://www.mozilla.org/en-US/firefox/releases/

rate on average (median of 40 and 42 days for traditional
and rapid releases, respectively).

Minor-traditional releases are one of the main reasons
why the traditional release strategy can integrate ad-
dressed issues more quickly than the rapid release strat-
egy. Furthermore, the length of the release cycles are
roughly the same between traditional and rapid releases
when both minor and major releases are considered.

RQ3: Did the change in the release strategy have
an impact on the characteristics of delayed issues?

Motivation: In RQ1 and RQ2, we study the differences
between rapid and traditional releases with respect to in-
tegration delay. We find that although issues tend to be
addressed more quickly in rapid releases, they tend to wait
longer to be integrated. We also find that the use of minor
releases is the main reason why traditional releases may inte-
grate addressed issues more quickly. In RQ3, we investigate
what are the characteristics of each release strategy that
are associated with integration delay. This investigation is
important to shed light on what may generate integration
delay in each release strategy before choosing one of them.
Approach: We build explanatory models (i.e., logistic re-
gression models) for the traditional and rapid releases data
using the metrics that are presented in Table 2. We model
our response variable Y as Y = 1 for addressed issues that
are delayed, i.e., missed at least one release before integra-
tion [7] and Y = 0 otherwise. Hence, our models are in-
tended to explain why a given addressed issue has its inte-
gration delayed (i.e., Y = 1).

We follow the guidelines of Harrell Jr. [10] for building ex-
planatory regression models. Figure 6 provides an overview
of the process that we use to build our models. First, we
estimate the budget (degrees of freedom) that we can spend
on our models. Second, we check for metrics that are highly
correlated using Spearman rank correlation tests (ρ) and we
perform a redundancy check to remove the redundant met-
rics before building our explanatory models.

We then assess the fit of our models using the ROC area
and the Brier score. The ROC area is used to evaluate the
degree of discrimination achieved by the model. The val-
ues range between 0 (worst) and 1 (best). An area greater
than 0.5 indicates that the explanatory model outperforms
näıve models such as random guessing. The Brier score is
used to evaluate the accuracy of probabilistic predictions.
This score measures the mean squared difference between
the probability of delay assigned by our models for a partic-
ular issue I and the actual outcome of I (i.e., if I is actually
delayed or not). Hence, the lower the Brier score, the more
accurate the probabilities that are produced by our models.



Table 2: Metrics used in our explanatory models.

Dimension Attributes Value Definition (d)|Rationale (r)

Reporter Experience Numeric

d: the number of previously integrated issues that were reported by the reporter of a partic-
ular addressed issue.
r: The greater the experience of the reporter the higher the quality of his reports and the
solution to his/her reports might be integrated more quickly [27].

Reporter inte-
gration

Numeric

d: The median in days of the previously integrated addressed issues that were reported by a
particular reporter.
r: If a particular reporter usually reports issues that are integrated quickly, his/her future
reported issues might be integrated quickly as well.

Resolver Experience Numeric

d: the number of previously integrated addressed issues that were addressed by the resolver
of a particular addressed issue. We consider the assignee of the issue to be the resolver of
the issue.
r: The greater the experience of the resolver, the greater the likelihood that his/her code
will be integrated faster [27].

Resolver inte-
gration

Numeric

d: The median in days of the previously integrated addressed issues that were addressed by
a particular resolver.
r: If a particular resolver usually address issues that are integrated quickly, his/her future
addressed issues might be integrated quickly as well.

Issue Stack trace at-
tached

Boolean
d: We verify if the issue report has an stack trace attached in its description.
r: A stack trace attached may provide useful information regarding the cause of the issue,
which may quicken the integration of the addressed issue [26].

Severity Nominal

d: The severity level of the issue report. Issues with higher severity levels (e.g., blocking)
might be integrated faster than other issues.
r: Panjer observed that the severity of an issue has a large effect on its time to be addressed
in the Eclipse project [24].

Priority Nominal
d: The priority level of the issue report. Issues with higher severity levels (e.g., P1) might
be integrated faster than other issues.
r: Higher priority issues will likely be integrated before lower priority issues.

Description size Numeric
d: The number of words in the description of the issue.
r: Issues that are well described might be more easy to integrate than issues that are difficult
to understand.

Project Queue rank Numeric

d: A rank number that represents the moment when an issue is addressed compared to other
addressed issues in the backlog. For instance, in a backlog that contains 500 issues, the first
addressed issue has rank 1, while the last addressed issue has rank 500
r: An issue with a high queue rank is an recently addressed issue. An addressed issue might
be integrated faster/slower depending of its rank.

Cycle queue
rank

Numeric

d: A rank number that represents the moment when an issue is addressed compared to other
addressed issues of the same release cycle. For example, in a release cycle that contains 300
addressed issues, the first addressed issue has a rank of 1, while the last has a rank of 300.
r: An issue with a high cycle queue rank is an recently addressed issue compared to the
others of the same release cycle. An issue addressed close to the upcoming release might be
integrated faster.

Queue position Numeric

d: queue rank
all addressed issues . The queue rank is divided by all the issues that are addressed by the

end of the next release. A queue position close to 1 indicates that the issue was addressed
recently compared to others in the backlog.
r: An addressed issue might be integrated faster/slower depending of its position.

Cycle queue po-
sition

Numeric

d: cycle queue rank
addressed issues of the current cycle . The cycle queue rank is divided by all of the addressed

issues of the release cycle. A cycle queue position close to 1 indicates that the issue was
addressed recently in the release cycle.
r: An issue addressed close to a upcoming release might be integrated faster.

Process Number of Im-
pacted Files

Numeric
d: The number of files linked to an issue report.
r: An integration delay might be related to a high number of impacted files because more
effort would be required to properly integrate the modifications [16].

Churn Numeric
d: The sum of added lines plus the sum of deleted lines to address the issue.
r: A higher churn suggests that a great amount of work was required to address the issue,
and hence, verifying the impact of integrating the modifications may also be difficult [16, 23].

Fix time Numeric
d: Number of days between the date when the issue was triaged and the date that it was
addressed [9].
r: If an issue is addressed quickly, it may have a better chance to be integrated faster.

Number of ac-
tivities

Numeric
d: An activity is an entry in the issue’s history.
r: A high number of activities might indicate that much work was required to address the
issue, which may impact the integration of the issue into a release [16].

Number of com-
ments

Numeric
d: The number of comments of an issue report.
r: A large number of comments might indicate the importance of an issue or the difficulty
to understand it [9], which might impact the integration delay [16].

Interval of com-
ments

Numeric

d: The sum of the time intervals (hour) between comments divided by the total number of
comments of an issue report.
r: A short interval of comments indicates that an intense discussion took place, which
suggests that the issue is important. Hence, such issue may be integrated faster.

Number of
tosses

Numeric

d: The number of times that the assignee has changed.
r: Changes in the issue assignee might indicate that more than one developer have worked
on the issue. Such issues may be more difficult to integrate, since different expertise from
different developers might be required [14, 16].

Next, we assess the stability of our models by computing
the optimism-reduced ROC area and Brier score [8]. The op-

timism of each metric is computed by selecting a bootstrap
sample to fit a model with the same degrees of freedom of
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the original model. The model built from the bootstrap
sample is applied both on the bootstrap and original sam-
ples (ROC and Brier scores are computed for each sample).
The optimism is the difference in the ROC area and Brier
score of the bootstrap sample and original sample. This
process is repeated 1,000 times and the average optimism
is computed. Finally, we obtain the optmism-reduced scores
by subtracting the average optimism from the initial ROC
area and Brier score estimates [8].

We evaluate the impact that each metric has on the mod-
els that we fit. We use Wald χ2 maximum likelihood tests.
The larger the χ2 value, the larger the impact that a particu-
lar metric has on our explanatory models’ performance. We
also study the relationship that the most impactful metrics
share with the likelihood of integration delay. To do so, we
plot the change in the estimated probability of delay against
the change in each impactful metric while holding the other
metrics constant at their median values using the Predict

function in the rms package [10].
We also plot nomograms [10, 13] to evaluate the impact

of the metrics in our models. Nomograms are user-friendly
charts that visually represent explanatory models. For in-
stance, Figure 8(a) shows the nomogram of the model that
we fit for the rapid release data. The higher the number
of points assigned to a explanatory metric on the x axis
(e.g., 100 points are assigned to comments in rapid releases),
the larger the effect of that metric in the explanatory model.
We compare which metrics are more important in both tra-
ditional and rapid releases in order to better understand the
differences between these release strategies.
Results: Our models achieve a Brier score of 0.05-
0.16 and ROC areas of 0.81-0.83. The models that
we fit to traditional releases achieve a Brier score of 0.16
and an ROC area of 0.83, while the models that we fit to
the rapid release data achieve a Brier score of 0.05 and an
ROC area of 0.81. Our models outperform näıve approaches
such as random guessing and ZeroR — our ZeroR models
achieve ROC areas of 0.5 and Brier scores of 0.06 and 0.45 for
rapid and traditional releases, respectively. Moreover, the
bootstrap-calculated optimism is less than 0.01 for both the
ROC areas and Brier scores of our models. This result shows
that our regression models are stable enough to perform our
statistical inferences that follow.

Traditional releases prioritize the integration of
backlog issues, while rapid releases prioritize the inte-
gration of issues of the current release cycle. Table 3
shows the explanatory power (χ2) of each metric that we
use in our models.

The queue rank metric is the most important metric in
the models that we fit to the traditional release data. Queue
rank measures the moment when an issue is addressed in the

Table 3: Overview of the regression model fits. The χ2 of
each metric is shown as the proportion in relation to the
total χ2 of the model.

Traditional releases Rapid releases
# of instances 34, 673 37, 441

Wald χ2 4, 964 2, 705
Budgeted Degrees of Freedom 1033 149

Degrees of Freedom Spent 26 25

Reporter experience
D.F. 1 1
χ2 2∗∗∗ 2∗∗∗

Reporter integration
D.F. 1 1
χ2 5∗∗∗ 4∗∗∗

Resolver Experience
D.F. 1 �
χ2 1∗∗∗

Resolver integration
D.F. 1 1
χ2 2∗∗∗ 5∗∗∗

Fix time
D.F. 1 1
χ2 2∗∗∗ 8∗∗∗

Severity
D.F. 6 6
χ2 1∗∗∗ 1∗∗∗

Priority
D.F. 5 5
χ2 1∗∗∗ ≈ 0

Size of description
D.F. 1 1
χ2 ≈ 0 1∗∗∗

Stack trace attached
D.F. 1 1
χ2 ≈ 0 ≈ 0

Number of files
D.F. 1 1
χ2 1∗∗∗ 1∗∗∗

Number of comments
D.F. 1 1
χ2 ≈ 0∗ 31∗∗∗

Number of tossing
D.F. 1 1
χ2 ≈ 0∗∗∗ ≈ 0

Number of activities
D.F. 1 1
χ2 1∗∗∗ 3∗∗∗

Interval of comments
D.F. � �
χ2

Code churn
D.F. 1 1
χ2 ≈ 0 ≈ 0

Queue position
D.F. 1 1
χ2 17∗∗∗ 2∗∗∗

Queue rank D.F. 1 1
χ2 56∗∗∗ 14∗∗∗

Cycle queue rank
D.F. 1 1
χ2 10∗∗∗ 28∗∗∗

Cycle queue position
D.F. ⊕ �
χ2

� discarded during correlation analysis
⊕ discarded during redundancy analysis
∗ p < 0.05; ∗∗ p < 0.01; ∗ ∗ ∗ p < 0.001

backlog of the project (see Table 2). Figure 7(a) shows the
relationship that queue rank shares with integration delay.
Our models reveal that the addressed issues in traditional
releases have a higher likelihood of being delayed if they are
addressed later when compared to other issues in the backlog
of the project.

On the other hand, cycle queue rank is the second-most
important metric in the models that we fit to the rapid re-
lease data. Cycle queue rank is the moment when an issue
is addressed in a given release cycle. Figure 7(b) shows the
relationship that cycle queue rank shares with integration
delay. Our models reveal that the addressed issues in rapid
releases have a higher likelihood of being delayed if they
were addressed later than other addressed issues in the cur-
rent release cycle. Interestingly, we observe that the most
important metric in our rapid release models is the num-
ber of comments. Figure 7(c) shows the relationship that
the number of comments shares with integration delay. We
observe that the greater the number of comments of an ad-
dressed issue, the greater the likelihood of integration delay.
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Figure 8: Nomograms of our explanatory models.

This result corroborates the intuition that a lengthy discus-
sion may be indicative of a complex issue, which may be
more likely to be delayed.

Moreover, Figures 8(a) and 8(b) show the estimated effect
of our metrics using nomograms [13]. Indeed, our nomo-
grams reiterate the large impact of number of comments
(100 points) and cycle queue rank (84 points) in rapid re-
leases, and the large impact of queue rank (100 points) in
traditional releases. We also observe that stack trace at-
tached has a large impact on traditional releases (68 points)
despite not being a significant contributor to the fit of our
models (cf. Table 3). The large impact shown in our nomo-
gram for stack trace attached is due to the skewness of our
data, i.e., only 5 instances within the traditional release
data have the stack trace attached set to true. Thus, stack
trace attached does not strongly contribute to the overall

fit of our models.
Another key difference between traditional and rapid re-

leases is how addressed issues are prioritized for integration.
Traditional releases are analogous to a queue in which the
earlier an issue is addressed, the lower its likelihood of delay.
On the other hand, rapid releases are analogous to a stack
of cycles, in which the earlier an issue is addressed in the
current cycle, the lower its likelihood of delay.

Our models suggest that issues that are addressed early
in the project backlog are less likely to be delayed in tra-
ditional releases. On the other hand, issues in rapid re-
leases are queued up on a per release basis, in which issues
that are addressed early in the release cycle of the current
release are less likely to be delayed.



5. DISCUSSION
In this section, we discuss if the difference of integration

delay between release strategies could be due to confounding
factors, such as the type and the size of the addressed issues.

The integration delay of addressed issues is unlikely
to be related to the size of an issue. One may sus-
pect that the difference in integration delay between release
strategies may instead be due to the size of an issue. We
use the number of files, LOC, and number of packages that
were involved in the fix of an issue to measure the size of
an issue. Figure 9 shows the distributions of the metrics
that measure the size of an issue. We observe that the
difference between distributions of LOC is statistically in-
significant (p = 0.86). As for the number of files and the
number of packages, although we respectively obtain signif-
icant p values of 0.014 and < 2.2−16, we observe negligible
effect-sizes of delta = −0.05 and delta = −0.07 between the
distributions.

The difference between traditional and rapid re-
leases is unlikely to be related to the differences be-
tween enhancements and bug-fixes. We also investigate
if the observed difference in the integration delay between
traditional and rapid releases is related to the kind of ad-
dressed issues. For example, rapid releases could be deliver-
ing more enhancements, which likely require additional in-
tegration time in order to ensure that the new content is of
sufficient quality. Figure 10 shows the distributions of delays
among release strategies grouped by bug fixes and enhance-
ments. We observe no clear distinction between integration
delay and the kind of addressed issues being integrated.

6. THREATS TO VALIDITY
We now describe the threats to the validity of our study.
Construct Validity. Construct threats to validity are

concerned with the degree to which our analyses are mea-
suring what we are claiming to analyze.

Tools were developed to extract and analyze the integra-
tion data in the studied system. Defects in these tools could
have an influence on our results. However, we carefully
tested our tools using manually-curated subsamples of the
studied system, which produced consistent results.

Internal Validity. Internal threats to validity are con-
cerned with the ability to draw conclusions from the relation
between the independent and dependent variables.

The way that we link issue IDs to releases may not rep-
resent the total addressed issues per release. For example,
although Firefox developers record issue IDs in commit logs,
we do not know how many of the addressed issues were not
recorded in the VCS. Techniques that improve the quality of
the link between issue reports and commit logs could prove
useful for future work.

In Section 5, we compare the integration delay between
rapid and traditional releases by grouping the issues as bug
fixes or enhancements. We use the severity field of the issue
reports to perform this grouping. We are aware that the
severity field has noise [11] (i.e., many values represent the
same level of importance). Still, the enhancement severity is
one of the significantly different values of severity according
to previous research [11]. We also use the number of files,
packages, and the LOC to approximate the size of an issue.
Although these are widely used metrics to measure the size
of a change, we are aware that this might not represent the

true complexity that was involved in the fix of the issue.
External Validity. External threats are concerned with

our ability to generalize our results. In our work, we study
Firefox releases, since the Firefox system shifted from a tra-
ditional release cycle to a rapid release cycle. Although we
control for variations using the same studied system in dif-
ferent time periods, we are not able to generalize our con-
clusions to other systems that adopt a traditional/rapid re-
lease cycle. Replication of this work using other systems is
required in order to reach more general conclusions.

7. RELATED WORK
In this section, we situate our study with respect to prior

work on the impact of adopting rapid release cycles and the
process of integrating and delivering addressed issues.

Traditional vs. Rapid Releases. Shifting from tradi-
tional releases to rapid releases has been shown to have an
impact on software quality and quality assurance activities.
Mäntylä et al. [20] found that rapid releases have more tests
executed per day but with less coverage. The authors also
found that the number of testers decreased in rapid releases,
which increased the test workload. Souza et al. [29] found
that the number of reopened bugs increased by 7% when
Firefox changed to a rapid release cycle. Souza et al. [28]
found that backout of commits increased when rapid releases
were adopted. However, they note that such results may be
due to changes in the development process rather than the
rapid release cycle — the backout culture was not widely
adopted during the Firefox traditional releases. We also in-
vestigate the shift from traditional releases to rapid releases
in this paper. However, we analyze integration delay rather
than quality and quality assurance activities.

It is not clear yet if rapid releases lead to faster fix-
ing of bugs. Baysal et al. [4] found that bugs are fixed
faster in Firefox traditional releases when compared to
fixes in the Chrome rapid releases. On the other hand,
Khomh et al. [18] found that bugs associated to crash re-
ports are fixed faster in Firefox rapid releases when com-
pared to Firefox traditional releases. However, less bugs are
fixed in rapid releases, proportionally. Our study corrobo-
rates that issues are addressed more quickly in rapid release
cycles, but wait longer to be delivered to the end users.

Rapid releases may cause users to adopt new versions of
the software earlier. Baysal et al. [4] found that users of
the Chrome browser are more likely to adopt new versions
of the system when compared to Firefox traditional releases.
Khomh et al. [18] also found that the new versions of Firefox
that were developed using rapid releases were adopted more
quickly than the versions under traditional releases. In this
paper, we investigate the impact that a shift from traditional
to rapid releases has on delivering addressed issues to users
rather than user adoption of new releases.

Delays and Software Issues. Prior research has studied
delays related to the integration and delivery of addressed
issues to end users. Jiang et al. [16] studied the integration
process of the Linux kernel. They found that 33% of the code
patches that were submitted to resolve issues are accepted
into an official Linux release after 3 to 6 months. In our prior
work [7], we investigate how many releases an addressed
issue may be delayed before shipment. We found that 98%
of addressed issues in the rapid releases of the Firefox system
were delayed by at least one release. Unlike prior work [7],
we investigate how the change of release strategy relates to
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integration delay.
Morakot et al. [21, 22] study the risk of an issue to intro-

duce delays in the delivery of software releases. The authors
found that metrics such as the percentage of delayed issues
that a developer is involved with, discussion time, and num-
ber of issue reopenings are strongly related to the delay of
a software release. Rahman and Rigby [25] found that the
period to stabilize addressed issues can take from 45 to 93
days in the Linux kernel and from 56 to 149 days in Chrome.
Jiang et al. [15] proposes the ISOMO model to measure the
cost of integrating a new patch into a host project. Our
work complements the aforementioned studies by investi-
gating the impact that the adoption of a rapid release cycle
may have upon the integration delay of addressed issues.

8. CONCLUSIONS
In this paper, we perform a comparison of the traditional

and rapid releases of the Firefox system regarding integra-
tion delay. We analyze a total of 72, 114 issue reports of
111 traditional releases and 73 rapid releases. We make the
following observations:

• Although issues tend to be addressed more quickly in
the rapid release cycle, addressed issues tend to be in-
tegrated into consumer-visible releases more quickly in
the traditional release cycle. However, a rapid release

cycle may improve the consistency of the delivery rate
of addressed issues.

• We observe that the faster delivery of addressed is-
sues in the traditional releases is partly due to minor-
traditional releases. One suggestion for practitioners
is that more effort should be invested in accommodat-
ing minor releases to issues that are urgent without
compromising the quality of the other releases being
shipped

• The triaging time of issues is not significantly different
among the traditional and rapid releases.

• The total time spent from the issue report date to its
integration into a release is not significantly different
between traditional and rapid releases.

• In traditional releases, addressed issues are less likely
to be delayed if they are addressed recently in the back-
log. On the other hand, in rapid releases, addressed
issues are less likely to be delayed if they are addressed
recently in the current release cycle.
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